Email: kraisler (at) uw (dot) edu
Links: linkedin, github, resume
Hello. I am a 4th year PhD student at UW. I work at the RAIN lab within the Aerospace department. My advisor is Mehran Mesbahi. As a PhD student, my job is to research and develop solutions to math-heavy practical problems relating to controls, robotics, and aerospace.
I love what I do because I get to stand at the intersection of theory and application, and embrace challenging math-heavy engineering problems. For example, over the summer, my lab and I built a quadrotor set-up in order to test control algorithms in real-time.
I had to learn a great deal about hardware implementation, setting up a ROS environment, and uploading autopilot software. I knew none of this at first, but I quickly learned and appreicated how powerful this technology is. Currently, I am writing a motion system into the ROS environment. By this, I mean that I want a script where the inputs are the quadrotor state, a trajectory cost, and a constraint (e.g. land the quadrotor while satisfying the line-of-sight constraint), and the output will be the optimal trajectory. Then, I will have an MPC script to steer the quadrotor (in real time) to track that nominal trajectory.
My main research interests are policy optimization, reinforcement learning, and optimal control. My thesis topic will be on controller synthesis through Riemannian optimization. Here, Riemannian optimization is a toolkit from optimization theory used when your search space is constrained in a smooth non-degenerate way.
Outside of work, I curl, train Shotokan karate (2nd degree black belt), and do lots of reading. My wife and I are huge foodies and enjoy discovering new restaurants in the Seattle region.
using policy optimization to design optimal controllers
steering dynamic agents towards a single point on a smooth manifold
Manopt contributions: I contribute to the Manopt library. Manopt is a Matlab toolbox for optimization on manifolds I use pretty often. I added a method that returns the Lie identity for Lie groups, and used Rodrigues’ rotation formula for optimize the exp() and log() operators for SO(3).
Output-Feedback Synthesis Orbit Geometry: Quotient Manifolds and LQG Direct Policy Optimization
Policy Optimization in Control: Geometry and Algorithmic Implications
Distributed Consensus on Manifolds using the Riemannian Center of Mass
Multi-Agent Passivity-based Control for Perception-based Guidance
Consensus on Lie groups for the Riemannian Center of Mass
Vision-based Distributed Pose Estimation using a Spacecraft Constellation
Recipient of CDC 2023 Travel Grant
3rd place in UW A&A Research Showcase 2022: I placed 3rd in UW’s A&A Research Showcase 2022. Here, A&A PhD students give 3 minute presentations of their recent research. Here is the link to my presentation.