Distributed Consensus on Manifolds using the **Riemannian Center of Mass**

- Coauthors: Shahriar Talebi and Prof. Mehran Mesbahi
 - University of Washington **RAIN Lab**
 - August 16, 2023

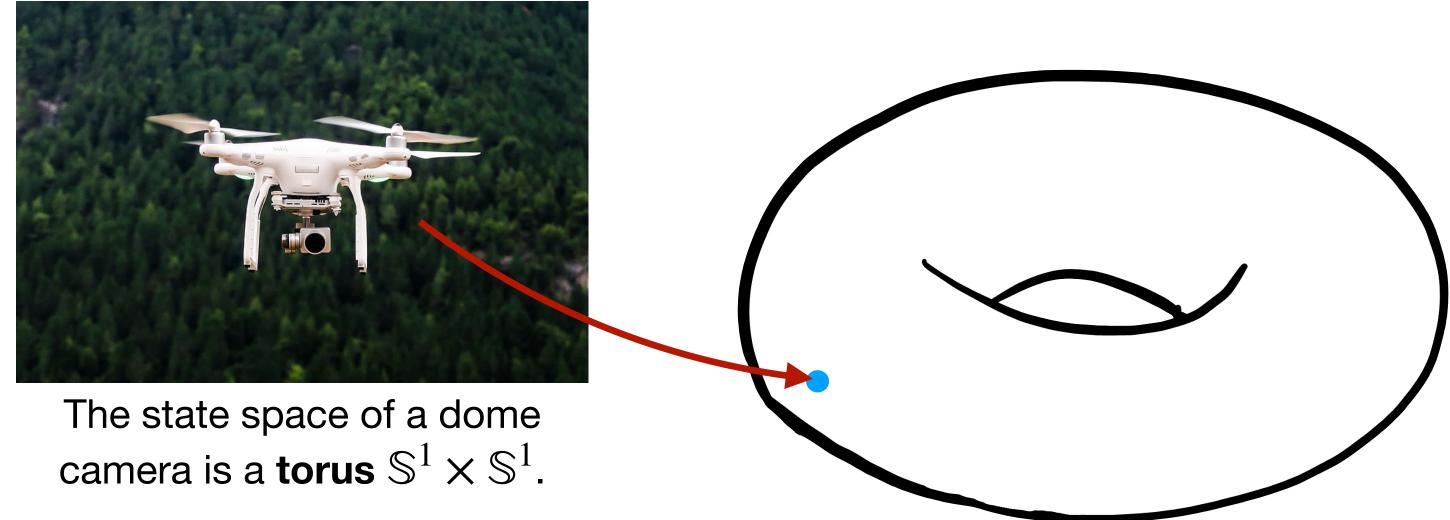
RAIN Lab @ UW

Presenter: Spencer Kraisler

motivation for consensus on manifolds

- consensus is central to **distributed computation**
 - Steer a set of agents to a single point
 - Studied mostly on Euclidean spaces
- Robots with **non-Euclidean** state spaces

• Formation control on manifolds



RAIN Lab @ UW

The Canadarm2 has a **non-Euclidean** state space.

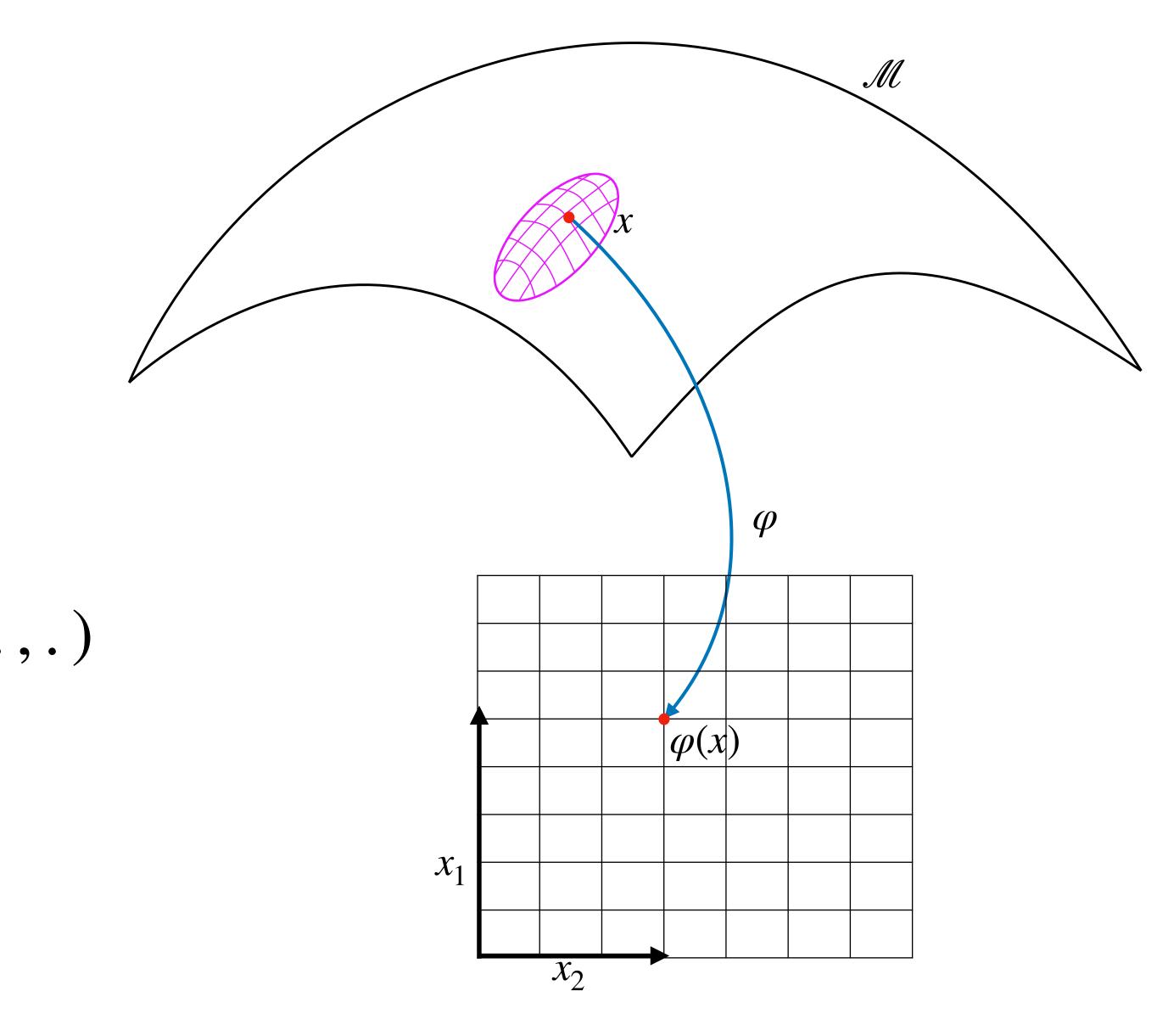
1/10

background

- smooth manifold:
 - topological space $\mathcal{M} \subset \mathbb{R}^n$
 - locally Euclidean

- Riemannian metric:
 - induces metric space structure $d_g(.,.)$

intrinsic vs extrinsic quantities



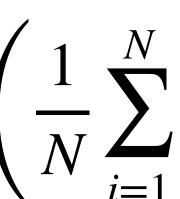
background

what is an average on a Riemannian manifold?

- average solves $\min_{x \in \mathbb{R}^n} \sum_{i=1}^n ||x z_i||^2$
- Riemannian center of mass (RCM) \overline{z} solves

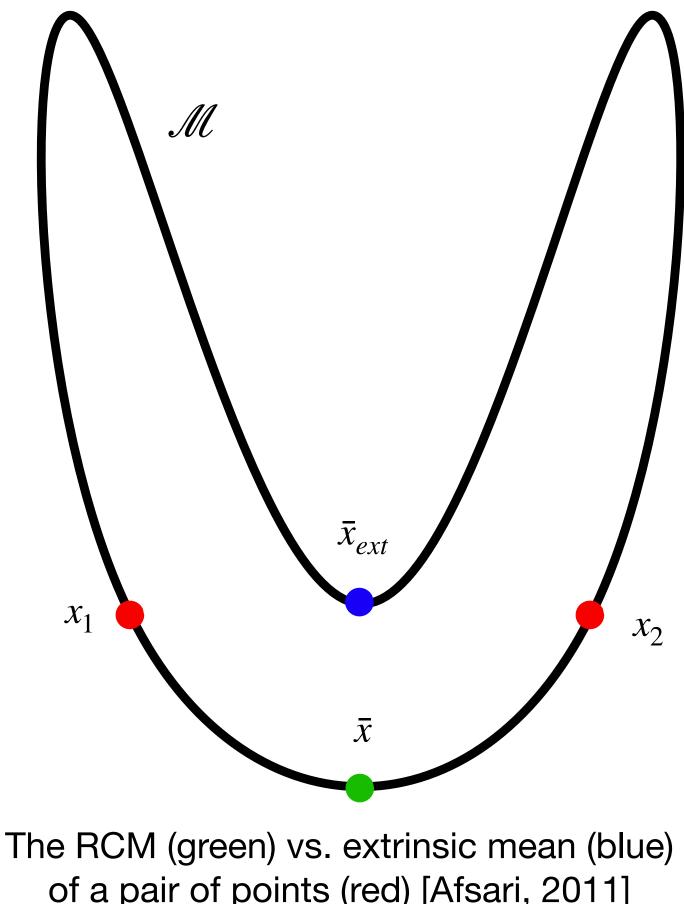
$$\min_{x \in \mathcal{M}} f(x) := \sum_{i=1}^{n} d_g(x, z_i)^2$$

• intrinsic better than extrinsic: $\bar{z}_{ext} = \text{proj}_{\mathcal{M}} \left(\frac{1}{N} \sum_{i=1}^{N} z_i \right)$



- applications
 - medical imaging
 - weather

RAIN Lab @ UW



of a pair of points (red) [Afsari, 2011]

problem formulation

consider:

• Riemannian manifold *M*

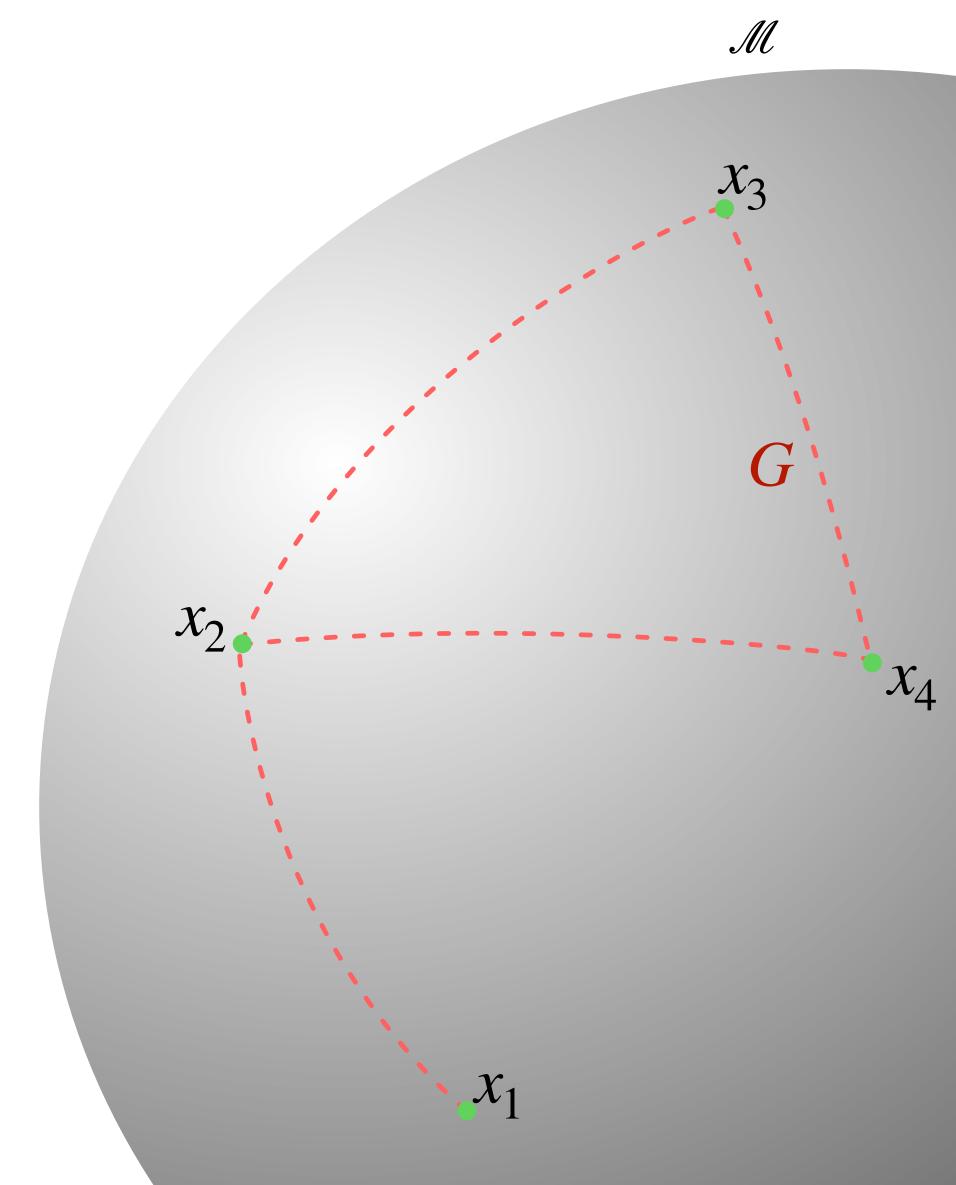
- agents $x_1, \ldots, x_N \in \mathcal{M}$
 - communication graph G

-
$$x_i(k+1) = F_i(k, x_m(k) : m \sim i)$$

problem:

- design intrinsic + distributed dynamics to synchronize agents
 - no projection, no embedding

RAIN Lab @ UW



consensus on manifolds

• Consensus dynamics for Euclidean space:

-
$$x_i(0) = z_i$$

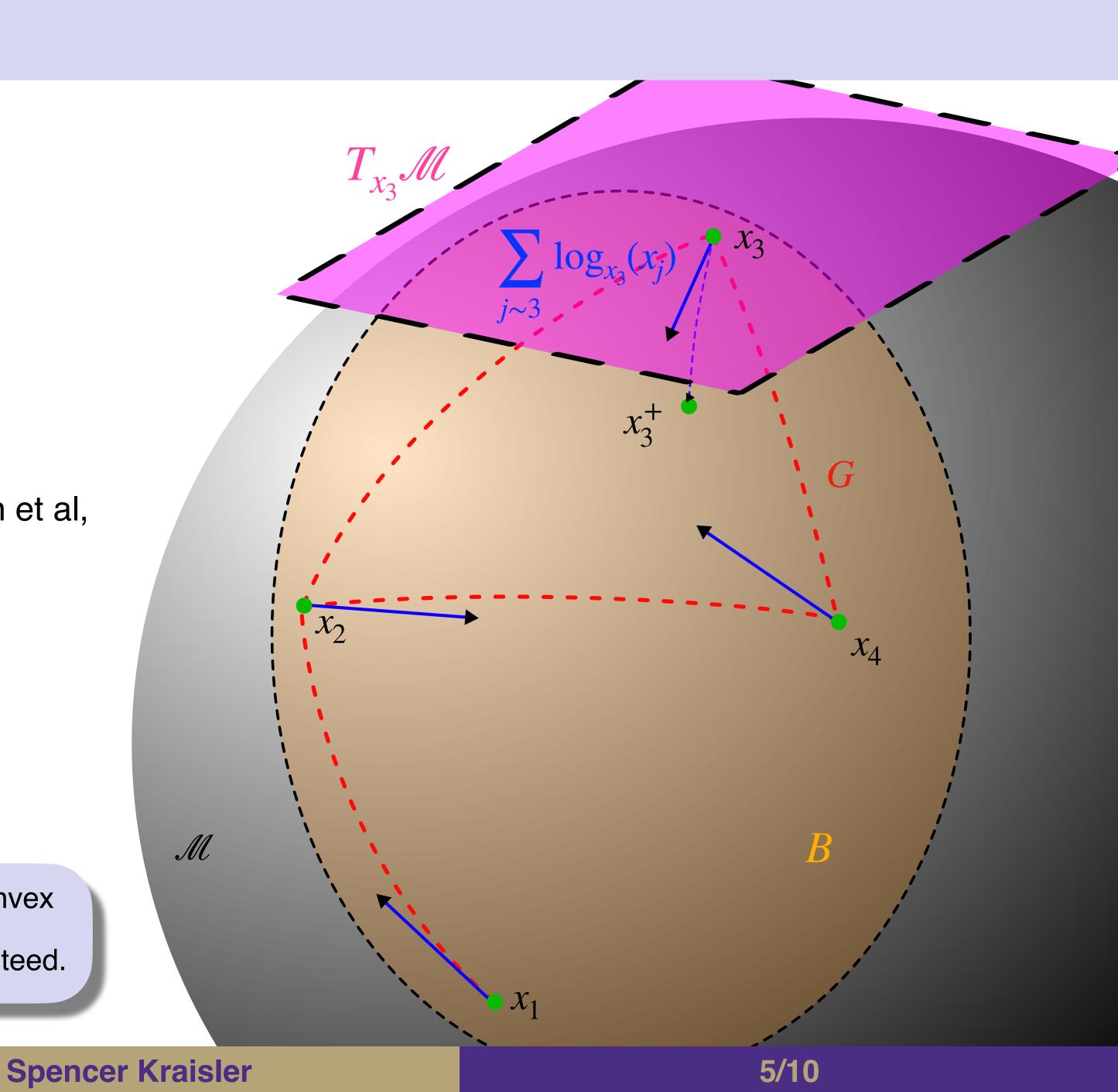
- $x_i^+ = x_i^- + \epsilon \sum_{j \sim i} (x_j - x_i)$

• Simplest consensus dynamics for a manifold [Tron et al, 2013]:

$$-x_{i}(0) = z_{i}$$
$$-x_{i}^{+} = \exp_{x_{i}}\left(\epsilon \sum_{j \sim i} \log_{x_{i}}(x_{j})\right)$$

theorem: if $\{x_i(0)\}$ are initialized within a geodesically convex ball *B* and $\{x_i(k)\} \subset B$ for all *k*, then consensus is guaranteed.

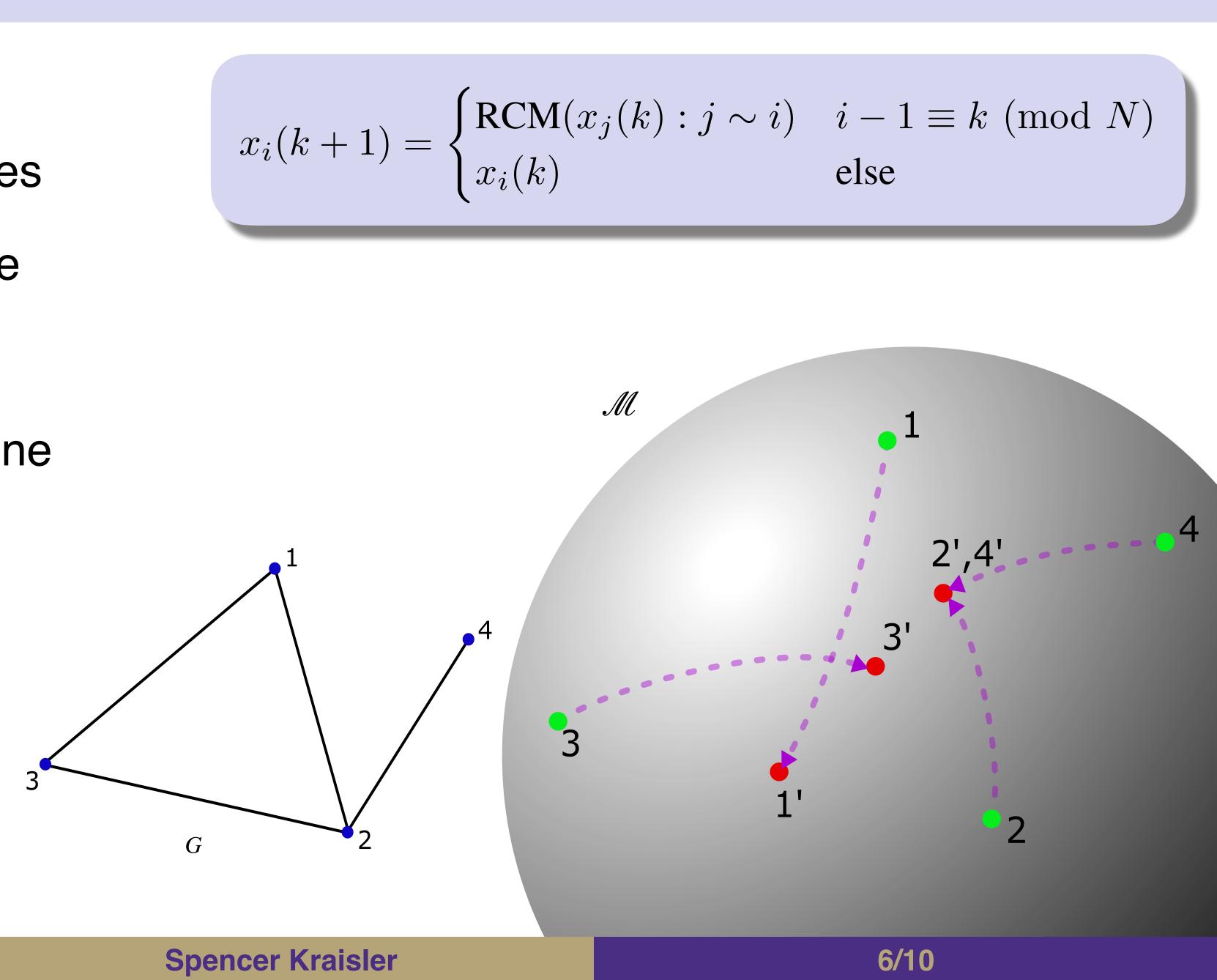
RAIN Lab @ UW



our algorithm

• intuition: each agent moves towards neighbors' average

• Round robin approach: one agent moves per time step



RAIN Lab @ UW

$$x_i(k+1) = \begin{cases} \operatorname{RCM}(x_j(k) : j \sim i) & i-1 \equiv k \pmod{x_i(k)} \\ x_i(k) & \text{else} \end{cases}$$

guarantees

• $x_i(k+1)$ is in strict interior of geodesic convex hull of $\{x_j(k) : j \sim i\}$ (*B*) (not true

for extrinsic mean)

• geodesic variance

$$\varphi(\mathbf{x}(k)) = \frac{1}{2} \sum_{\{i,j\} \in E} d_g(x_i(k), x_j(k))^2 > \varphi(\mathbf{x}(k+1))$$

•
$$\varphi(\mathbf{x}(k+N)) = \varphi(\mathbf{x}(k))$$
 iff
 $x_1(k) = \ldots = x_N(k)$

theorem: if $\{x_i(0)\}$ are initialized within a geodesically convex ball B, then consensus is guaranteed.

 \mathcal{M}

X

Spencer Kraisler

 X_{z}

 $\log_{\bar{x}}(x_3)$

 $\log_{\bar{x}}(x_1)$

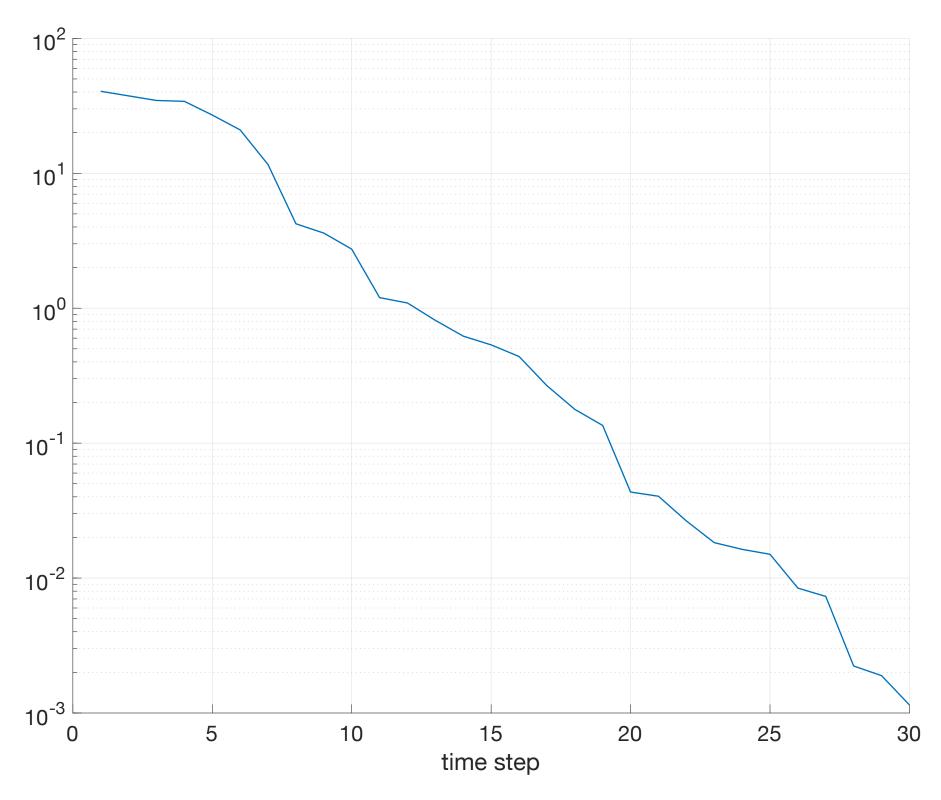
7/10

 \overline{x}

 $\log_{\bar{x}}(x_2)$

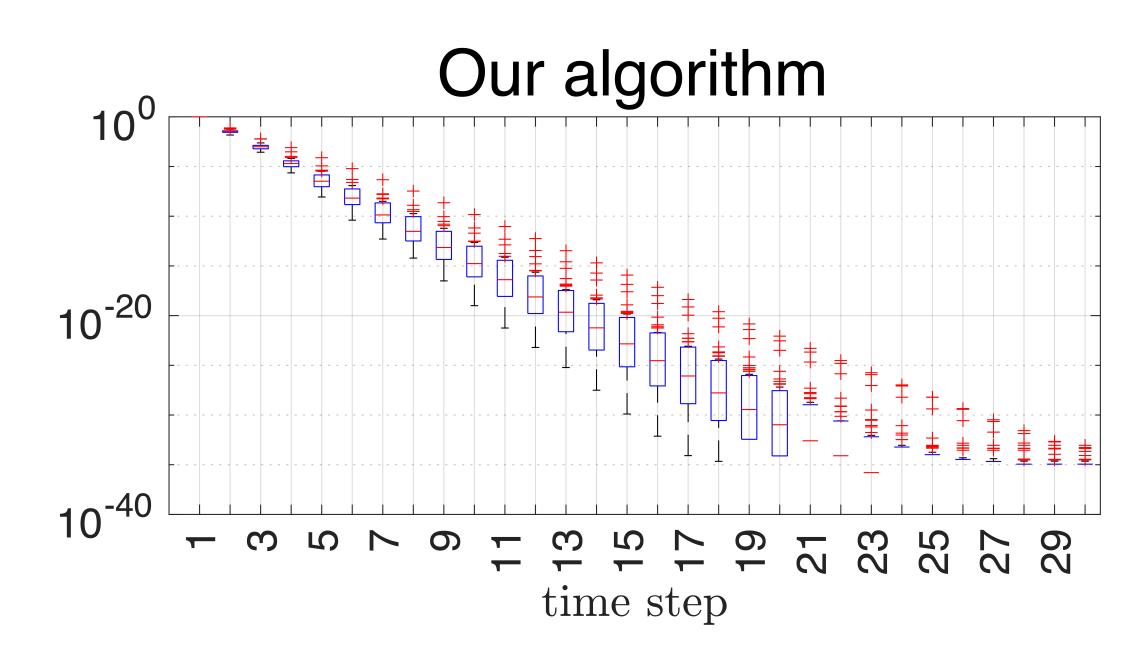
numerical simulation

- average cost over 40 runs
 - our algorithm (top) vs [2] (bottom)

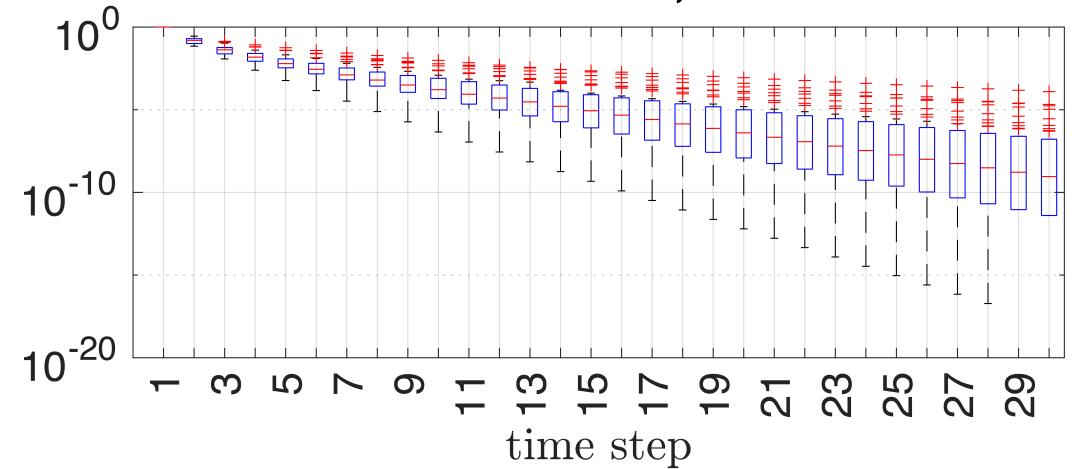


linear decay of geodesic variance

RAIN Lab @ UW



Tron et al., 2013



concluding remarks

Euclidean consensus dynamics: $x_i^+ = x_i + \epsilon \sum (x_j - x_i)$

Results

$$\lim_{k \to \infty} x_i(k) = \frac{1}{N} \sum_{i=1}^N z_i$$

N T

i∼*i*

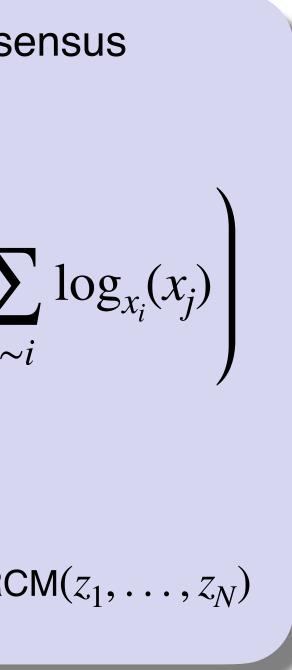
Riemannian consensus dynamics:

$$x_i^+ = \exp_{x_i} \left(\epsilon \sum_{j \sim 1}^{\infty} \right)$$

Results

 $\lim x_i(k) = ? \neq \mathsf{RCM}(z_1, \dots, z_N)$ $k \rightarrow \infty$

RAIN Lab @ UW



Goal: Given $z_1, \ldots, z_N \in M$ and a communication graph $\mathscr{G} = ([N], E)$ find discrete dynamics $x_i(k+1) = F_i\left(x_j(k) : j \in N_i \cup \{i\}\right)$ such that $\lim x_i(k) = RCM(z_1, \dots, z_N).$ $k \rightarrow \infty$

concluding remarks

- in this talk:
 - consensus on Riemannian manifolds
 - asynchronous approach with convergence guarantees

- to be continued:
 - agents move in random order
 - consensus to the Riemannian center of mass (CDC)

