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motivation for consensus on manifolds

• consensus is central to distributed computation 

• Steer a set of agents to a single point

• Studied mostly on Euclidean spaces

• Robots with non-Euclidean state spaces

• Formation control on manifolds

The state space of a dome 
camera is a torus . 𝕊1 × 𝕊1

The Canadarm2 has a non-
Euclidean state space.
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• smooth manifold: 

- topological space 

- locally Euclidean

• Riemannian metric: 

- induces metric space structure  

• intrinsic vs extrinsic quantities

ℳ ⊂ ℝn

dg( . , . )

background
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background

what is an average on a Riemannian manifold?

• average solves 

• Riemannian center of mass (RCM)  solves 

• intrinsic better than extrinsic: 

• applications
- medical imaging
- weather

min
x∈ℝn

N

∑
i=1

∥x − zi∥2

z̄

min
x∈ℳ

f(x) :=
n

∑
i=1

dg(x, zi)2

z̄ext = projℳ ( 1
N

N

∑
i=1

zi)
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The RCM (green) vs. extrinsic mean (blue) 
of a pair of points (red) [Afsari, 2011]
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consider: 

• Riemannian manifold 

• agents 

- communication graph 

-

problem: 

• design intrinsic + distributed dynamics to 

synchronize agents

- no projection, no embedding

ℳ

x1, . . . , xN ∈ ℳ
G

xi (k + 1) = Fi (k, xm (k) : m ∼ i)

problem formulation

RAIN Lab @ UW Spencer Kraisler

G

x2

x1

x3

x4

4/10

ℳ



G

x2

x3

x4

∑
j∼3

logx3
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ℳ
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consensus on manifolds
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theorem: if  are initialized within a geodesically convex 

ball  and  for all , then consensus is guaranteed.

{xi(0)}

B {xi(k)} ⊂ B k

• Consensus dynamics for Euclidean space:

-
-

• Simplest consensus dynamics for a manifold [Tron et al, 

2013]: 

-

-

xi(0) = zi

x+
i = xi + ϵ∑

j∼i

(xj − xi)

xi(0) = zi

x+
i = expxi

ϵ∑
j∼i

logxi
(xj)

ℳ
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• intuition: each agent moves 

towards neighbors’ average

• Round robin approach: one 

agent moves per time step

our algorithm
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It was proven that if M is complete and has sectional
curvature bounded above, then as long as agents are initial-
ized such that '(x(0)) < (r⇤)2/2D, where D = diam(G),
consensus is guaranteed with a sublinear rate. Relaxing this
constraint, if one assumes that x(0) are initialized within
any geodesic ball B with radius r < r

⇤, and that the
iterates remain in B indefinitely, then consensus is guar-
antee. This assumption is not uncommon in the field of
optimization on manifolds. Alternatively, if M is complete,
simply connected, and has non-positive sectional curvature
(making M a Hadamard manifold), consensus is guaranteed
regardless of where the agents have been initialized. This
observation follows from the fact that Hadamard manifolds
are diffeomorphic to Euclidean space. Such manifolds in-
clude projective spaces and the manifold of positive-definite
matrices under certain Riemannian metrics [13]. Variants of
(4) have also been studied. [10] considers one such variant
for M = SO(3) with almost-global consensus guarantee,
where a continuous version is studied in [14].

IV. THE RCM AND OUR ALGORITHM

In this section, we present our algorithm that builds on
the properties of Riemannian Center of Mass (RCM) as its
cornerstone. As a generalization of the Euclidean mean, RCM
retains many desirable properties of being a “mean” not
reflected in other such generalizations [15].

Let A ⇢M. We say U is g-convex if for any x, y 2 A,
there exists a unique minimizing geodesic connecting x and
y contained in A. Some authors refer to this as strong g-
convexity [12]. Also, the convexity radius of M is defined
as

r
⇤ :=

1

2
min(inj(M),

⇡p
�
),

where inj(M) is the injectivity radius and � is the upper-
bound on the sectional curvature of M [16].

The RCM of states xi (i = 1, 2, . . . , N) is defined as a
point that globally minimizes the sum of squared distances,
i.e.

RCM(x) 2 argmin
y2M

1

2

NX

i=1

d(y, xi)
2
.

The RCM exists and is unique if all xi’s are contained within
some geodesic ball with radius r < r

⇤ [16]. Therefore,
RCM : C !M is well-defined where,

C :=
�
x 2MN | 9y 2M, r < r

⇤ : xi 2 By(r) 8i
 

is the convexity submanifold of the product manifold MN

[7]. The RCM of x can be computed by fixing a tolerance
⌧ > 0 and step size ✏ > 0, and performing gradient descent
on the sum of squared distances

fx(y) :=
1

2

mX

i=1

d(y, xi)
2
. (6)

The details are laid out in Algorithm 1. Due to the strong g-
convexity of sum of squared distances cost, gradient descent
under a fixed step size enjoys a linear rate of convergence.
See [17] for optimally chosen stepsizes.

Algorithm 1: RCM Subroutine
Input: (x1, ..., xm) 2 C, stepsize ✏ > 0, tolerance
⌧ > 0

Initialize: x̄(0) = x1

do

Compute rfx(x̄(k)) = �
Pm

i=1 logx̄(k)(xi)
Update x̄(k + 1) = expx̄(k)(�✏rfx(x̄(k)))

while krfx(x̄(k))kx̄(k) > ⌧

return x̄(k + 1)

A. Brief Overview of the Algorithm

In our algorithm, each agent moves to the Riemannian
Center of Mass (RCM) of its neighbors one at a time:

xi(k + 1) =

(
RCM(xj(k) : j ⇠ i) i� 1 ⌘ k (mod N)

xi(k) else
(7)

We emphasize that the RCM step above excludes self-loops
as j 6= i. Yet, we observed that consensus is always achieved
experimentally–in the case of SO(3)–even if self-loops are
included. However, our proof technique for arbitrarily Rie-
mannian manifolds builds on the consensus error (5) that
naturally excludes these self-loops.

Note this algorithm is memoryless and distributed since
we are only taking the RCM of an agent’s neighbors at the
current iteration. Also, this algorithm is intrinsic since RCM
is defined in terms of the geodesic distance function–as we
will subsequently discuss in this paper. A simple illustration
of our algorithm for four agents evolving on a sphere is
depicted in Figure 1. Here, we perform four iterations of
the algorithm, moving each agent once. Notice how agents
2 and 4 both end up at the same position after one iteration
due to the fact that agent 2 is the only neighbor of agent 4.

A similar asynchronous method where one agent moves
at a time has been briefly mentioned in [9]. However, this
reference was in regards to an extrinsic center known as the
induced arithmetic mean. Furthermore, no convergence nor
domain analysis were discussed. In the rest of this paper, we
provide convergence analysis of our algorithm.

B. The Algorithm

Given a set of agents with initial states x(0) 2 C ⇢MN ,
a connected graph G, and a fixed tolerance level ⌧ > 0, the
proposed distributed algorithm proceeds as Algorithm 2.

Algorithm 2: Distributed RCM-based Consensus
Input: (x1(0), ..., xN (0)) 2 C, tolerance ⌧ > 0
for k = 0, 1, ... do

for i = 1, ..., N do

if 'i(x(k)) > 2⌧/N & i� 1 ⌘ k (mod N)
then xi(k + 1) RCM(xj(k) : j ⇠ i) else

xi(k + 1) xi(k)

G
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x̄

logx̄(x3)

logx̄(x2)

logx̄(x1)

B

•  is in strict interior of geodesic 

convex hull of  ( ) (not true 

for extrinsic mean)

• geodesic variance 

•  iff 

 

xi(k + 1)
{xj(k) : j ∼ i} B

φ(x(k)) =
1
2 ∑

{i,j}∈E

dg(xi(k), xj(k))2 > φ(x(k + 1))

φ(x(k + N)) = φ(x(k))
x1(k) = . . . = xN(k)

guarantees 
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theorem: if  are initialized within a 

geodesically convex ball , then consensus 

is guaranteed.

{xi(0)}
B

ℳ



numerical simulation

RAIN Lab @ UW Spencer Kraisler

• average cost over 40 runs

• our algorithm (top) vs [2] (bottom)
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concluding remarks
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Euclidean consensus 

dynamics:

Results

x+
i = xi + ϵ∑

j∼i

(xj − xi)

lim
k→∞

xi(k) =
1
N

N

∑
i=1

zi

Riemannian consensus 

dynamics:

Results

x+
i = expxi

ϵ∑
j∼i

logxi
(xj)

lim
k→∞

xi(k) = ? ≠ RCM(z1, . . . , zN)

Goal: Given  and a 

communication graph  

find discrete dynamics 

 

such that 

.

z1, . . . , zN ∈ M

𝒢 = ([N], E)

xi(k + 1) = Fi (xj(k) : j ∈ Ni ∪ {i})

lim
k→∞

xi(k) = RCM(z1, . . . , zN)



• in this talk:

- consensus on Riemannian manifolds

- asynchronous approach with convergence 

guarantees

• to be continued:

- agents move in random order

- consensus to the Riemannian center of mass (CDC)

concluding remarks
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