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motivation for consensus on manifolds

* consensus is central to distributed computation
» Steer a set of agents to a single point

» Studied mostly on Euclidean spaces

‘ The naam hs a non-
 Robots with non-Euclidean state spaces Euclidean state space.

 Formation control on manifolds

The state space of a dome
camera is a torus S! x S.
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background

e smooth manifold:

- topological space . C |

- locally Euclidean

* Riemannian metric: ¢
- induces metric space structure dg( L) 7
Y
@)
* Intrinsic vs extrinsic quantities x|

RAIN Lab @ UW

Spencer Kraisler



background

what is an average on a Riemannian manifold?

N M
. average solves min Z |x — z||°
xeR" £
=1
- Riemannian center of mass (RCM) zZ solves
n
. . 2
mlnf(x) T Z dg(x’ Zl) Xext
XEM .
=1 X X9
1 &
- intrinsic better than extrinsic: z,,, = proj ,, N Z e
=1 The RCM (green) vs. extrinsic mean (blue)

of a pair of points (red) [Afsari, 2011]

. applications
- medical imaging

- weather
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problem formulation

consider: y

- Riemannian manifold

. agents x,...,xy € A

- communication graph G

- x; (k4 1) = Fy(k.x,, (k) - m ~ i)

problem:
» design Intrinsic + distributed dynamics to
synchronize agents

- no projection, no embedding



consensus on manifolds

* Consensus dynamics for Euclidean space:

- X =xl-+€2 (% — x;)
i

* Simplest consensus dynamics for a manifold [Tron et al,
2013]:

- X = exp,. | € 2 log, (x)
i

theorem: if {x;(0)} are initialized within a geodesically convex

ball 5 and {x;(k)} C B for all k, then consensus is guaranteed.



our algorithm

RCM(z;(k): j ~i) i—1=k (mod N)
z; (k) else

 intuition: each agent moves

towards neighbors’ average

* Round robin approach: one \

agent moves per time step



guarantees

theorem: if {x.(0)} are initialized within a
» x:(k+ 1) is in strict interior of geodesic 1 (0))

geodesically convex ball /5, then consensus
convex hull of {x,(k) : j ~ i} (7) (not true s quaranteed.

for extrinsic mean)

* geodesic variance g
1 ) ,', h .
px(k) == ) dx ), 507 > pxk+1) - f
Lj}EE ’

-
-
-
-
- o
& qp .

. p(X(k+ N)) = p(x(k)) iff
x;(k) = ... = xy(k)




numerical simulation

e average cost over 40 runs

* our algorithm (top) vs [2] (bottom)
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linear decay of geodesic variance
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time step

Tron et al., 2013
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concluding remarks

Euclidean consensus Riemannian consensus
dynamics: dynamics: Goal: Given 7, ...,2y € M and a
communication graph & = ([N], E
xi+=xi+62(xj—xi) - ° p ( )
I X" = exp, 2 log, (x) find discrete dynamics
J~i
xk+1)=F <xk ENUZ)
Results ( ) ORY U]
, ] & Results such that
Iim x(k) = — 2 Z; | .
k— oo N _— ]}LTO x(k) = ? # RCM(zy, . - . , Zy) /}E?o x(k) = RCM(zy, . .., zy).
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concluding remarks

e In this talk:
- consensus on Riemannian manifolds
- asynchronous approach with convergence

guarantees

* to be continued:
- agents move in random order

- consensus to the Riemannian center of mass (CDC)
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