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Motivation

Example: 3D localization via
network of cameras [Tron, 2012]

Example: Coordinated motion of
robot arms [Sarlette, 2010]

Non-Euclidean state space
(Dome camera, covariance
matrix, SO(3), robot arm)

Consensus is the foundation of
distributed computation

Synchronize states of network of
processors ⇐⇒ steer agents to
single point

Consensus point needs
geometric+statistical significance
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Background

Smooth manifold:

topological space M ⊂ Rn

locally Euclidean
every point has a tangential space
TxM

Riemannian metric:

Geodesic distance: dg (., .)
expx : TxM → M and
logx(.) := (expx(.))

−1

intrinsic vs. extrinsic quantities

TxM
x

M

v

y

Figure: Start at x , travel along v for ∥v∥
distance, arrive at y := expx(v)
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Example

Euclidean SO(n) Riemannian

Point x ∈ Rn R ∈ SO(n) x ∈ M

Tangent vectors v ∈ Rn
W ∈ TRSO(n) = R · Skew(n) v ∈ TxM

Inner product vTw trace(V TW ) ⟨v ,w⟩x

Geodesic γx,v (t) = x + tv γR,V (t) = R exp(tV ) γx,v (t) = expx(tv)
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Background II

What is an average on a Riemannian
manifold?
Euclidean:

x̄ := arg min
x∈Rn

∑N
i=1∥x − zi∥2

Riemannian center of mass (RCM):

RCM(z1, . . . , zN) := arg min
x∈M

∑N
i=1 dg (x , zi )

2

Applications: medical imaging, averaging
correlation matrices, averaging attitudes for
attitude estimation

Instrinsic better than extrinsic:

z̄ext := ProjM

(
1
N

∑N
i=1 zi

)

z1
z2

z3

z̄

z1 − z̄ z2 − z̄

z3 − z̄

z1 z2

z̄ext

z̄

(z1 + z2)/2

Figure: Flaw of extrinsic mean
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Problem Formulation

Consider:

Complete Riemannian manifold M
z1, . . . , zN ∈ B ⊂ M (only available locally)

Agents/processors x1, . . . , xN ∈ M under
connected communication network
G = ([N],E )

Distributed dynamics:

ẋi (t) = Fi (xj(t) : j ∈ Ni ∪ {i})

z̄

x1

x2 x3

x4G

ẋ1

ẋ2

ẋ3

ẋ4

M B

Problem
Design intrinsic distributed dynamics Fi such that

lim
t→∞

xi (t) = RCM(z1, . . . , zN)
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ẋ1

ẋ2
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ẋ4

M B

Problem
Design intrinsic distributed dynamics Fi such that

lim
t→∞

xi (t) = RCM(z1, . . . , zN)

Spencer Kraisler (RAIN Lab) Consensus on Lie groups Dec. 2023 6 / 14



Naive solution

Euclidean:
ẋi =

∑
j∈i (xj − xi )

Theorem
Under the above dynamics, consensus is
guaranteed and each
xi (t) → x∗ = 1

N

∑N
i=1 xi (0).

Riemannian:

1 ẋi =
∑

j∈Ni
logxi (xj)

2 or ẋi = PTxi
M

[∑
j∈Ni

(xj − xi )
]

Theorem

Under (1), consensus is guaranteed, provided
{xi (0)} are initialized within a geodesic ball
of radius r < r∗.

x1

x2
x3

x4

ẋ1

ẋ2

ẋ3

ẋ4

G

B
M

Tx4M

1Tron [2013]
2Sarlette [2008]
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2 or ẋi = PTxi
M

[∑
j∈Ni

(xj − xi )
]

Theorem

Under (1), consensus is guaranteed, provided
{xi (0)} are initialized within a geodesic ball
of radius r < r∗.

x1

x2
x3

x4

ẋ1
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Distributed Gradient Descent (DGD) with Gradient
Tracking (GT)

Problem: Let G be a connected graph, and each node is assigned a local cost
fi : Rn → R. Minimize in distributed fashion

f (x) :=
∑N

i=1 fi (x).

DGD with GT:
ẋi = −vi +

∑
j∈Ni

(xj − xi )

ẇi =
∑

j∈Ni
(vi − vj)

vi = −wi +∇fi (xi )

vi (0) := 0

Idea: vi ≈ 1
N

∑N
i=1 ∇fi (xi )

Thm [Carnevale, 2023]: Under strong
convexity and smoothness assumption,
each xi approaches x

∗ with exponential
rate, where x∗ minimizies f .

Note: RCM(z1, ..., zN) solves

minx∈M
∑N

i=1 dg (x , zi )
2
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Generalization of DGD with GT to SO(3)

Algorithm (SO(3))

Let Z1, . . . ,ZN ∈ B ⊂ SO(3). Define fi (R) := d2
g (R,Zi ) = ∥log

(
RTZi

)
∥2F and initialize

Ri (0) ∈ B and Vi (0) := 0. Our algorithm follows:
Ṙi = Ri ·

[
−Vi +

∑
j∈Ni

log
(
RT
i Rj

)]
Ẇi =

∑
j∈Ni

(Vi − Vj)

Vi = −Wi + RT
i ∇fi (Ri )

−∇2φ(R)−∇1φ(R) −∇3φ(R)

R2

R1 R3

−R2V2

−R1V1 −R3V3

Z2

Z3
Z1

Z̄

Ri ↦ Yi := RT
i ∇fi(Ri)

Vi ↦ RiVi

V1

V3

V2

− ·W2

− ·W1
− ·W3

·Y3

·Y1

·Y2
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Results

Algorithm (Riemannian manifold)

Let z1, . . . , zN ∈ B ⊂ M. Define
fi (x) := dg (x , zi )

2 and initialize
xi (0) ∈ B and vi (0) := 0 ∈ TziM. Our
algorithm follows:

ẋi = −T xi
zi vi +

∑
j∈Ni

logxi (xj)

ẇi =
∑

j∈Ni
(vi − vj)

vi = −wi + T zi
xi ∇fi (xi )

Theorem
Suppose M is a Lie group equipped with a bi-invariant metric. Let B ⊂ M be a
geodesically convex ball with z1, . . . , zN ∈ B. Then the only stationary point of
the proposed dynamics in B is x∗ = (z̄ , . . . , z̄) ∈ MN .

Corollary

If M = Rn, this stationary point is globally asymptotically stable.
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Proof overview

Let M be a Lie group with bi-invariant metric. Set m := TIM. Let
(x1(.), . . . , xN(.)) = x(.) ∈ BN ⊂ MN and (w1(.), . . . ,wN(.)) = w(.) ∈ mN .

Prop. 1. Define geodesic consensus error as

φ(x) :=
N∑
i=1

∑
j∈Ni

dg (xi , xj)
2

Then
∇φ(x) = 0 ∧ x ∈ BN ⇐⇒ φ(x) = 0 ⇐⇒ x1 = · · · = xN

Compactified dynamics:

ẋ = −∇φ(x)− dLxv = 0 (1)

ẇ = Lv = 0, (2)

where v = −w +∇f(x), f(x) := (f1(x1), . . . , fN(xN)), and L = L(G ).

We don’t want arbitrary consensus, we want consensus to
x∗ = (z̄ , . . . , z̄) ∈ BN ⊂ MN .
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Proof overview continued

Prop. 2. Bi-invariant metric implies
T I
xi logxi (xj) = −T I

xj logxj (xi ) = log
(
x−1
i xj

)
.

Prop. 3.
∑N

i=1 wi (t) = 0 for all t ≥ 0.

Prop. 4. z̄ = RCM(z1, . . . , zN) iff
∑N

i=1 log
(
z̄−1zi

)
= 0.

Prop 1. and Prob. 2. implies x1 = · · · = xN =: x∗ and
w = ∇f(x) = (log

(
(x∗)−1zi

)
)i .

Prop 3. and w = (log
(
(x∗)−1zi

)
)i imply

∑N
i=1 log

(
(x∗)−1zi

)
= 0

Prop 4. and
∑N

i=1 log
(
(x∗)−1zi

)
= 0 implies x∗ = z̄

□
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Comparisons
We compare against these algorithms:

(Lagrangian) Search for saddle points of the Lagrangian of the consensus reformulation:{
minx∈MN f (x) :=

∑N
i=1 d

2
g (xi , zi )

s.t.
∑

j∈Ni
dg (xi , xj )

2 = 0 ∀i

(Penalty) Solve

min
x∈MN

µk

N∑
i=1

dg (xi , zi )
2 +

N∑
i=1

∑
j∈Ni

dg (xi , xj )
2

via gradient descent for k = 1, 2, . . ., where µk is an increasing sequence.

Spencer Kraisler (RAIN Lab) Consensus on Lie groups Dec. 2023 13 / 14



Concluding remarks

Summary:

We generalized average consensus to Riemannian manifolds

Convergence guarantees for Lie groups with bi-invariant metric

Faster than the Lagrangian method empirically and has a seemingly linear
rate of convergence

Future directions:

Generalize to arbitrary Riemannian manifolds

Investigate stationary points, including their dynamical and statistical
properites

Investigate relationship between the convergence rate and G = ([N],E ) or
the curvature of M
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