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o Example: 3D localization via
network of cameras [Tron, 2012]
o Example: Coordinated motion of
robot arms [Sarlette, 2010]
o Non-Euclidean state space
(Dome camera, covariance
matrix, SO(3), robot arm)
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o Example: 3D localization via
network of cameras [Tron, 2012]

o Example: Coordinated motion of
robot arms [Sarlette, 2010]

o Non-Euclidean state space
(Dome camera, covariance
matrix, SO(3), robot arm)

@ Consensus is the foundation of
distributed computation

e Synchronize states of network of
processors <— steer agents to
single point

@ Consensus point needs
geometric+-statistical significance
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@ Smooth manifold:
e topological space M C R"
o locally Euclidean
e every point has a tangential space

M
@ Riemannian metric:

o Geodesic distance: dg(.,.)

e exp, : T M — M and
log, (.) := (exp,(.))™* Figure: Start at x, travel along v for ||v||

distance, arrive at y := exp,(v)

@ intrinsic vs. extrinsic quantities
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Euclidean 50(n) Riemannian
Point x eR" R € SO(n) xeM
Tangent vectors veR W € TrSO(n) = R - Skew(n) veTM
Inner product viw trace(VT W) (v, whx
Geodesic Yeu(t) = x + tv Yr,v(t) = Rexp(tV) Vv (t) = exp, (tv)
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Background Il
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Background Il

What is an average on a Riemannian
manifold?
Euclidean:

_ . N
X 1= arg)[g]'é‘n dimallx = ZiH2

Riemannian center of mass (RCM):
RCM(zi, ..., zy) := arg min Y.V d,(x, z)?
xeM
Applications: medical imaging, averaging

correlation matrices, averaging attitudes for
attitude estimation
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Background Il

What is an average on a Riemannian
manifold?
Euclidean:

_ . N
X 1= arg)[g]'é‘n dimallx = ZiH2

Riemannian center of mass (RCM):
RCM(z,...,zy) = arg nenj\rll SN de(x,2)?

Applications: medical imaging, averaging

correlation matrices, averaging attitudes for Zext
attitude estimation
Z1 Z2
Instrinsic better than extrinsic:
s . : 1N
Zext 1= Proj (N Zi:l z,) Figure: Flaw of extrinsic mean
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Problem Formulation

Consider:
@ Complete Riemannian manifold M
@ z,...,2y € 5 C M (only available locally)

@ Agents/processors xi, ..., xy € M under
connected communication network
G = ([N].E)

@ Distributed dynamics:

xi(t) = Fi(x(t) - j € NiU{i})

[} = =
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Problem Formulation

Consider:
@ Complete Riemannian manifold M
@ z,...,2y € 5 C M (only available locally)

@ Agents/processors xi, ..., xy € M under
connected communication network
G = ([N].E)

@ Distributed dynamics:

xi(t) = Fi(x(t) - j € NiU{i})

Problem
Design intrinsic distributed dynamics F; such that

tl_i)r’goX,'(t) = RCM(Zl, L. ,ZN)
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Naive solution

Euclidean:

Xj = Zjei(xj - X;)

Under the above dynamics, consensus is
guaranteed and each

x(t) = x* = L3N x(0).

Tron [2013]
2Sarlette [2008]
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Naive solution

Euclidean:

Xj = Zjei(xj = Xi)

Under the above dynamics, consensus is
guaranteed and each

x(t) = x* = L3N x(0).

Riemannian:
Q X =3 cn log, (%)

Under (1), consensus is guaranteed, provided
{xi(0)} are initialized within a geodesic ball
of radius r < r*.

Tron [2013]
2Sarlette [2008]
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Naive solution

Euclidean:

Xj = Zjei(xj = Xi)

Under the above dynamics, consensus is
guaranteed and each

xi(t) = x* = § 2L, %i(0).
Riemannian:

Q X = jen; log, (%)

Q@ or X =Pr m | D jen (X — Xi)]

Under (1), consensus is guaranteed, provided
{xi(0)} are initialized within a geodesic ball
of radius r < r*.

Tron [2013]
2Sarlette [2008]
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Distributed Gradient Descent (DGD) with Gradient

Tracking (GT)

Problem: Let G be a connected graph, and each node is assigned a local cost
f; : R" — R. Minimize in distributed fashion

F(x) == 1, ().



Distributed Gradient Descent (DGD) with Gradient

Tracking (GT)

Problem: Let G be a connected graph, and each node is assigned a local cost
f; : R" — R. Minimize in distributed fashion

F(x) =31, filx).
DGD:

Xi = =V1i(x) + X jen; (5 — xi)



Distributed Gradient Descent (DGD) with Gradient

Tracking (GT)

Problem: Let G be a connected graph, and each node is assigned a local cost
f; : R" — R. Minimize in distributed fashion

DGD with GT: Thm [Carnevale, 2023]: Under strong

X = —vi + Zje/\/,-(xj — x;) convexity and smootflnests assumptlon,.
=3 (vi — ) each x; approaches x* with exponential
Wi = 2ujeni\Vi T Y rate, where x* minimizies f.

vi = —w; + Vfi(x)

v;(0):=0

Idea: v; ~ % vazl Vfi(xi)
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Distributed Gradient Descent (DGD) with Gradient

Tracking (GT)

Problem: Let G be a connected graph, and each node is assigned a local cost
f; : R" — R. Minimize in distributed fashion

DGD with GT: Thm [Carnevale, 2023]: Under strong

X = —vi + Zje/\/,-(xj — x;) convexity and smootflnests assumptlon,.
=3 (vi — ) each x; approaches x* with exponential
Wi = 2ujeni\Vi T Y rate, where x* minimizies f.

vi = —w; + Vfi(x)

vi(0):=0 Note: RCM(z, ..., zy) solves

. N 2
miny MZ,': dg(x, zi)
Idea: v; ~ %Zf\lzl Vfi(xi) ) vt
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Generalization of DGD with GT to SO(3)

Algorithm (S0(3))
Let Zy,...,Zy € B C SO(3). Define fi(R) := dZ(R, Z;) = ||log(R" Z)) |7 and initialize
Ri(0) € B and V;(0) := 0. Our algorithm follows:

R =R - [—V; + 2 ien; Iog(R,-TRj)]

Wi =Y, (Vi - V)
Vi = —W; + RTVfi(R:)

R~ Y= R V(R)

V/id

.

R,
/ “RV2 N : V.
/ N\ -W.
—Vlw(R_)’ =V,0(R) ~V;0(R) 3 :
O= \
b—RIV, z R}‘G\‘{ 4
R, R, !
O ..
A . unt
V> RY,
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Results

Algorithm (Riemannian manifold)

Let Z1,...,ZN € B Cc M. Define Consensus on the states
fi(x) := dg(x, z)? and initialize X=—Lx+v .
xi(0) € B and v;(0) :==0 € T, M. Our y = - Vix) "

algorithm follows:

Consensus on the local cost gradients

Xi = =TVi + 3 e 108, (X)) o
- v W= — +
Wi = ZjEM(Vi - VJ) v::—wv:-y Y

Vi = —w; + 7::‘Vf,(x,)

Suppose M is a Lie group equipped with a bi-invariant metric. Let B C M be a
geodesically convex ball with zy,...,zy € B. Then the only stationary point of
the proposed dynamics in B is x* = (Z,...,z) € MN.

If M =", this stationary point is globally asymptotically stable. |
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Proof overview

Let M be a Lie group with bi-invariant metric. Set m := T;M. Let
(xa()s - xn()) =x(.) € BN ¢ MM and (wi(.), ..., wn(.)) = w(.) € mV.
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Proof overview

Let M be a Lie group with bi-invariant metric. Set m := T;M. Let
(xa()s - xn()) =x(.) € BN ¢ MM and (wi(.), ..., wn(.)) = w(.) € mV.

Prop. 1. Define geodesic consensus error as

e(x) = Z Z dg (i, %)

i=1 jEN;
Then
V<P(X)ZO/\XEBN = p(x) =0 <= x3 = = xy

Spencer Kraisler (RAIN Lab) Consensus on Lie groups Dec. 2023 11/14



Proof overview

Let M be a Lie group with bi-invariant metric. Set m := T;M. Let
(xa()s - xn()) =x(.) € BN ¢ MM and (wi(.), ..., wn(.)) = w(.) € mV.

Prop. 1. Define geodesic consensus error as

e(x) = Z Z dg (i, %)

i=1 jEN;
Then
V<P(X)ZO/\XEBN = p(x) =0 <= x3 = = xy
Compactified dynamics:

where v = —w + Vf(x), f(x) := (A(x1),..., fw(xn)), and L = L(G).
We don’t want arbitrary consensus, we want consensus to
x*=(z,...,2) e BN c MV,
Consensus on Lie groups



Proof overview continued

@ Prop. 2. Bi-invariant metric implies
T! log,,(x) = — T} log, (x;) = log(x x;).
e Prop. 3. 25\1:1 w;(t) = 0 for all t > 0.
o Prop. 4. z=RCM(z,...,zy) iff SV, log(z71z) = 0.
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Proof overview continued

@ Prop. 2. Bi-invariant metric implies
T! log,,(x) = — T} log, (x;) = log(x x;).
e Prop. 3. 25\1:1 w;(t) = 0 for all t > 0.
o Prop. 4. z=RCM(z,...,zy) iff SV, log(z71z) = 0.

Prop 1. and Prob. 2. implies x; = -+ = xy =: x* and
w = Vf(x) = (log((x*)z)):.
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Proof overview continued

@ Prop. 2. Bi-invariant metric implies
T! log,,(x) = — T} log, (x;) = log(x x;).
e Prop. 3. 25\1:1 w;(t) = 0 for all t > 0.
o Prop. 4. z=RCM(z,...,zy) iff SV, log(z71z) = 0.

Prop 1. and Prob. 2. implies x; = -+ = xy =: x* and
w = Vf(x) = (log((x*)z)):.

Prop 3. and w = (log((x*)~*z)); imply Z,N:1 log((x*)~'z;) =0
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Proof overview continued

@ Prop. 2. Bi-invariant metric implies
T! log,,(x) = — T} log, (x;) = log(x x;).
e Prop. 3. 25\1:1 w;(t) = 0 for all t > 0.
o Prop. 4. z=RCM(z,...,zy) iff SV, log(z71z) = 0.

Prop 1. and Prob. 2. implies x; = -+ = xy =: x* and
w = Vf(x) = (log((x*)z)):.

Prop 3. and w = (log((x*)~*z)); imply Z,N:1 log((x*)~'z) =0
Prop 4. and Y1 log((x*)'z) = 0 implies x* = z
]
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Comparisons

We compare against these algorithms:
@ (Lagrangian) Search for saddle points of the Lagrangian of the consensus reformulation

min, v F(x) = =M (XHZI)
s.t. Zje/\/’,- dg(xi, %)% = 0 Vi

@ (Penalty) Solve

min uk2d<x,,z,) +Z > de(xi )’

i=1 jEN;
via gradient descent for k = 1,2, ..., where puy is an increasing sequence.
Consensus Error RCM Error
10° 10°
10 10
10710 10710
—Our algorithm
——Penalty Method
R. Tron, et. al.
— Lagrangian
10715 10715
0 50 100 150 200 0 50 100 150 200
iteration

iteration
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Concluding remarks

Summary:
@ We generalized average consensus to Riemannian manifolds
@ Convergence guarantees for Lie groups with bi-invariant metric

@ Faster than the Lagrangian method empirically and has a seemingly linear
rate of convergence

Future directions:
@ Generalize to arbitrary Riemannian manifolds

@ Investigate stationary points, including their dynamical and statistical
properites

@ Investigate relationship between the convergence rate and G = ([N], E) or
the curvature of M
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