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What is Direct Policy Optimization (PO)?

Goal: bridge control theory and RL

Design controllers via policy
gradient methods

Novel focus: optimizer
performance =⇒ study
geometry of policy space +
performance measure

Idea: if training in real time, we
need to know when policy will be
safe
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Figure: The set of stabilizing 2× 2 diagonal
feedback matrices K (Talebi, 2024)
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Previous Results

LQR

Domain: stabilizing static feedback
matrices

analytic, non-convex, gradient dominant

global convergence under gradient descent
(GD) with linear rate

LQG

Domain: stabilizing dynamic linear
controllers

analytic, non-convex, non-strict saddle
points, degenerate stationary points

Sublinear convergence rate under GD

No local convergence guarantee

Figure: Set of stabilizing static
controllers

Questions: Why sub-linear convergence rate? Why no convergence guarantee?
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Stochastic LTI Systems

Consider the stochastic linear system

ẋ = Ax + Bu + w ,

y = Cx + v

in feedback with a dynamic linear
controller

ξ̇ = AKξ + BKy ,

u = CKξ

K := (AK,BK,CK)

Controller space: C̃n ⊂
open

Rn2+nm+np,

stabilizing full-order minimal (i.e.
controllable + observable) controllers

Figure: Illustration of the set of dynamic
stabilizing policies C̃1 for an LTI system with
A = 1.1 and B = C = 1, resulting in two
path-connected components
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Stochastic LTI System (Cont.)

Important Coordinate-transformation: Sξ = η, TS(K) = (SAKS
−1,SBK,CKS

−1){
ξ̇ = AKξ + BKy ,

u = CKξ
=⇒

{
η̇ = SAKS

−1η + SBKy ,

u = CKS
−1η

LQG Cost:

J̃(K) := lim
T→∞

Ew
1

T

∫ T

0

(xTQx + uTRu)dt

Theorem (Zheng, Tang, & Li, 2021)

J̃ : C̃n → R is analytic, non-convex, all
minima are global, admits saddle points.
Also, coordinate-invariance:
J̃(TS(K)) = J̃(K).

Figure: A colored plot of J̃(·) over C̃1.
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Direct PO Re-visited

Coordinate-invariance =⇒ n2

dimensions of REDUNDENCY

An orbit: [K] := {TS(K) : S ∈ GL(n)}

Problem

Minimize J̃ over C̃n in a fast way, with at
least linear rate with local convergence
guarantee that takes advantage of
coordinate-invariance property

Solution: Reformulate C̃n as a
Riemannian manifold such that
“∇J̃(K) ⊥ [K]”

Figure: A colored plot of J̃(·) over C̃1 but
with only a few orbits colored in one
connected component.
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Smooth Manifold

Smooth manifold

A space which is locally Euclidean

C̃n, Unit quaternions Q
Compatible with calculus

Tangent space TxM ∼= Rn

TKC̃n
∼= Rn2+nm+np,

TqQ = {v ∈ R4 : vTq = 0}

Figure: Every point admits a vector space of
tangent vectors

Figure: Smooth manifold examples
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Riemannian Metric

Riemannian metric:

Inner product ⟨·, ·⟩x on each tangent
space TxM
length, angle, area, gradient,
Hessian

Riemannian gradient:
G (x)∇f (x) = ∇f (x), where ∇f is the
ordinary (Euclidean) gradient

Intuition: Riemannian gradient is a
pre-conditioning on the gradient field
G (x)−1∇f (x) (example: barrier method)

Example:

f (x) := x4, ⟨v ,w⟩x := v · x2 · w
∇f (x) = 4x3, ∇f (x) = 4x

Figure: The graphs of f (x), ∇f (x), and
∇f (x).
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Riemannian Gradient Descent

Retraction: Rx : TxM → M

TxM x M
v

Rx(v)

Figure: Retraction visualization

Riemannian Gradient Descent
(RGD):

xk+1 = Rxk (−α∇f (xk))

x1x2

−∇f (x1)−∇f (x2)
Tx1MTx2M

M

Figure: RGD visualization; here,
x2 = Rx1(−α∇f (x1)).

Important: The right Riemannian metric can speed up convergence rate of
RGD from sub-linear to linear!
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The Krishnaprasad-Martin Metric

Intuition for the right Riemannian metric ⟨V,W⟩K : T C̃n × T C̃n → R:
1 Should be coordinate-invariant: ⟨TS(V), TS(W)⟩TS (K) = ⟨V,W⟩K
2 ⟨V,W⟩K should explode as K becomes less stablizing (mimicking barrier

method techniques)

Definition (Krishnaprasad-Martin metric)

⟨V,W⟩KM
K := c1 tr

(
Wo(K)E (V)Wc(K)E (W)T

)
+ c2 tr

(
F (V)TWo(K)F (W)

)
+ c3 tr

(
G (V)Wc(K)G (W)T

)
where c1 > 0, c2, c3 ≥ 0, and Wc(·),Wo(·) are
closed-loop controllability/observability
Grammians

Figure: Developed in 1983 to
study manifold of stable LTI
systems, involved control
theorists such as Kalman,
Tannenbaum, and Brockett
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The Algorithm and Convergence Analysis

RGD of (C̃n, ⟨·, ·⟩KM,+) over J̃(·) with
fixed step size:

Kt+1 = Kt − α∇J̃(Kt) (3)

Theorem (Kraisler and Mesbahi, 2024)

Suppose the LQG controller is
controllable + observable, and
null∇2J̃(K∗) = TK∗ [K∗]. Then there
exists α > 0 and a neighborhood U of
K∗ such that the sequence defined by (3)
with K0 ∈ U exists and converges to [K∗]
with at least linear rate.

Summary: theoretical gauarantee on
local convergence + linear rate
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An Interpretation: Smooth Quotient Manifolds

Orbit: [K] = {TS(K) : S ∈ GLn}
smooth quotient manifold:
Cn := {[K] : K ∈ C̃n}

dim(C̃n) = n2 + nm + np and
dim(Cn) = nm + np

Important: RGD over C̃n ⇐⇒ RGD
over the (smaller dimensional) Cn

Figure: Visualization of a quotient manifold
Figure: The orbits of C̃1 colored
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Conclusion

Summary:

RGD order of magnitude faster than GD

Local convergence guarantee

Interpretation: RGD over the much smaller quotient controller manifold

Future directions:

2nd-order methods

Studing the topology and geometry of Cn
H∞ non-smooth optimization over the controller quotient manifold Cn
Data-driven synthesis of filters (Kalman filter)
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