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What is Direct Policy Optimization (PO)?

@ Goal: bridge control theory and RL

@ Design controllers via policy
gradient methods
o Novel focus: optimizer
performance = study
geometry of policy space +
performance measure

o ldea: if training in real time, we
need to know when policy will be
safe

Figure: The set of stabilizing 2 x 2 diagonal
feedback matrices K (Talebi, 2024)
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Previous Results

LQR
o Domain: stabilizing static feedback
matrices

@ analytic, non-convex, gradient dominant

@ global convergence under gradient descent
(GD) with linear rate

LQG

@ Domain: stabilizing dynamic linear
controllers

@ analytic, non-convex, non-strict saddle
points, degenerate stationary points

Figure: Set of stabilizing static
controllers

@ Sublinear convergence rate under GD

@ No local convergence guarantee

Questions: Why sub-linear convergence rate? Why no convergence guarantee?
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Stochastic LTI Systems

Consider the stochastic linear system

x=Ax+ Bu+w,

y=C+v
in feedback with a dynamic linear
controller
¢ = Ac€ + By,
u=Ck§

K = (AK, BK, CK)

5 P tnm-+np Figure: lllustration of the set of dynamic
Controller space: C, ogn R ! stabilizing policies C; for an LTI system with

stabilizing full-order minimal (i.e. A=11and B = C =1, resulting in two
controllable + observable) controllers path-connected components
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Stochastic LTI System (Cont.)

Important Coordinate-transformation: S¢ =7, Ts(K) = (SAkS™1, SBk, CkS™1)

§=Ac€+ By, _ |0=5AS I+ SBy,
u= Ck¢ u=CS

LQG Cost:

.
J(K) := TlinooEW%/o (x"@x + u" Ru)dt

Theorem (Zheng, Tang, & Li, 2021)

J: 5,, — R is analytic, non-convex, all
minima are global, admits saddle points.
Also, coordinate-invariance:

J(Ts(K)) = J(K).

Figure: A colored plot of J(-) over Ci.
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Direct PO Re-visited

Coordinate-invariance =—> n?

dimensions of REDUNDENCY

An orbit: [K] :={T7s(K) : S € GL(n)}

Problem

Minimize J over C, in a fast way, with at
least linear rate with local convergence
guarantee that takes advantage of
coordinate-invariance property

Solution: Reformulate C, as a Figure: A colored plot of J(-) over C; but
Riemannian manifold such that with only a few orbits colored in one
~ connected component.

“VI(K) L [K]"
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Smooth Manifold

Smooth manifold
@ A space which is locally Euclidean
° C~,, Unit quaternions Q

@ Compatible with calculus
e Tangent space T, M =2 R"

o TGy =R HmEmP,
T,Q={veR*:vig=0}

Figure: Every point admits a vector space of :

tangent vectors Figure: Smooth manifold examples
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Riemannian Metric

Example:

Riemannian metric: Vf(x) =4x3, Vf(x)=4x
@ Inner product (-,-)x on each tangent
space T, M

@ length, angle, area, gradient, //
Hessian ,

Riemannian gradient: .
G(x)Vf(x) = VF(x), where VT is the

ordinary (Euclidean) gradient E 9

pre-conditioning on the gradient field
G(x)71Vf(x) (example: barrier method)

Intuition: Riemannian gradient is a / / 1

Figure: The graphs of f(x), Vf(x), and
V£(x).
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Riemannian Gradient Descent

Riemannian Gradient Descent

. (RGD):
Retraction: R, : T,M — M

praa Xk+1 = R (—aVF(xk))

-

;XM’//
P
-
-

Figure: Retraction visualization

Figure: RGD visualization; here,
x2 = Rq(—aVif(x)).

Important: The right Riemannian metric can speed up convergence rate of
RGD from sub-linear to linear!
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The Krishnaprasad-Martin Metric

Intuition for the right Riemannian metric (V, W) : T&, X TC~n — R:
@ Should be coordinate-invariant: (7s(V), 7s(W))7s(k) = (V, W)k
@ (V, W)k should explode as K becomes less stablizing (mimicking barrier
method techniques)

Definition (Krishnaprasad-Martin metric)

Nr=[B, AB, 4B, .., A"1B] }

NOm[C, G, .y €]
E ( W) T ) . n be defincd on %, 0.0 quadratic
ds*=tr (N®dAN'N""dA'N©) + tr (dON'N*" dC') + tr (dB'NON°dB)  (2.8)

)

(V. W)RM = c tr (Wo(K)E(V) We(K)
+ ctr (F(V)T W, K)F W)

Figure: Developed in 1983 to

T
+atr (G(V) ) study manifold of stable LTI

systems, involved control

where ¢; > 0, ¢, ¢3 > 0, and We(-), Wo(-) are theorists such as Kalman,
closed-loop controlIablllty/observablllty Tannenbaum, and Brockett

Grammians )
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The Algorithm and Convergence Analysis

~ ~ . System with Non-minimal LQG Controller Doyle System
RGD of (Cp, (-, Y¥M, +) over J(-) with 10°
fixed step size: o
Kt+l = Kt — OZVJ(Kt) (3) ilo”
;l:ur!
Theorem (Kraisler and Mesbahi, 2024) o
2 10°°
Suppose the LQG controller is e e e e
iteration
Contrgllf\a/b/e + Observable' and System with vanishing Hessian saddle point Random System
nullV*J(K*) = Tg~[K*]. Then there
exists o > 0 and a neighborhood U of \\\ al
o 1
K* such that the sequence defined by (3) | = kY o)y
with Ko € U exists and converges to [K*] | =" \\ ol N\
with at least linear rate. = 1 h N
o := \\ 10-2 So
= N N
Summary: theoretical gauarantee on N Lo N
. . DS S
local convergence + linear rate w? ~ N

0 5 10 15 20 0 100 200 300 400
iteration
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An Interpretation: Smooth Quotient Manifolds

@ Orbit: [K] = {7Ts(K) : S € GL,}

@ smooth quotient manifold:
Cn:={[K]: KeCn}

e dim(C,) = n® + nm + np and
dim(C,) = nm+ np

@ Important: RGD over C, < RGD
over the (smaller dimensional) C,

1}.’}3]

w2 () |

Figure: The orbits of C; colored

Figure: Visualization of a quotient manifold
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Conclusion

Summary:
@ RGD order of magnitude faster than GD
o Local convergence guarantee

@ Interpretation: RGD over the much smaller quotient controller manifold

Future directions:
@ 2nd-order methods
@ Studing the topology and geometry of C,
@ H.o non-smooth optimization over the controller quotient manifold C,

o Data-driven synthesis of filters (Kalman filter)
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