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o Seattle
@ Hobbies: curling, shotokan karate (2nd degree black
belt), reading B o ATEE ot
@ PhD candidate at UW Aerospace
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@ Passion for executing complex math solutions to
practical engineering applications; establishing
human presence in space Figure: My lab
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Research Interests

Designing controllers through optimization and
(Riemannian geometry)

@ Solve the LQG problem through Riemannian
optimization methods

o Trajectory optimization for systems whose state
spaces are smooth manifolds

@ Satellite constellations

@ Developing quadcopter hardware testbed (Python,

ROS) Figure: DROPLET
@ Distributed consensus for systems whose state
spaces are smooth manifolds

Spencer Kraisler (RAIN Lab) NASA JSC Nov. 2024 4/13



Table of Contents

@ |Intrinsic Successive Convexification

e T [T RV e



Optimal Control over Smooth Manifolds

T-1

T,Ln J(x,u) = Z c( Xk, uk) + h(xT)
k=0

s.t. Xk41 = f(Xk, Uk)
s(xk, uk) <0

What if the state space is (implictly) a
smooth manifold? |s that important? Figure: Constrained attitude trajectory
problem SO(3) x R?

Figure: Powered descent of a rocket Figure: Mobile manipulator (Lie group)
o I = E T 4

SE(3) x R® .
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Smooth Manifold

Smooth manifold M
@ A space which is locally Euclidean
e Unit quaternions Q
o Compatible with calculus
o Tangent space T, M =2 R"
o T,Q={veR":q'v=0} =R?

Retraction: R,: M — M

Figure: Smooth manifold examples
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What is Successive Convexification (SCvx)?

@ lst-order solver for non-convex trajectory optimization problems
@ allows infeasible initial trajectories

@ highly scalable

@ How SCvx works:

@ Start with infeasible trajectory (x, u)

@ Solves a “zoomed-in” convex sub-problem with linearizing dynamics and
constraints, obtaining trajectory perturbations (1, &)

@ adds perturbations to trajectory: x* <~ x+n, uT «—u+¢

@ Repeat
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From Shortcomings to Goals

Shortcomings:

@ Depends on state-space Goals:

parameterization @ Perform SCvx in a way that is
intrinsic to the manifold, not the
parameterization

@ Redundant dimensions

© Next trajectory won't be on

manifold @ Ensure perturbations are tangent to

the manifold surface

@ Use a retraction to “add” the
perturbations to the trajectory in an
intrinsic way

Figure: Visualization of perturbing a
trajectory along a tangent space.
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Problem Set-up

@ Write Python script for SCvx using only
CVXPY and NumPy

@ Simple problem: rotate g, € Q with angular
velocity wy for (fixed) At seconds:

Grr1 = qk @ exp(At - wy)

© Constraints: keep-out zone s STy rome
@ Visualization script (plots the boresight @
vector trajectory and the keepout zone)

Next step: achieve the goals of developing an intrinsic SCvx methodology...
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Linearizing Dynamics over a Smooth Manifold

f-M—-M

Best linear approximation of f at x: the
differential df, : ToM — TrgM

Idea: if M C R™ and dim(M) =n < m,
then

[Df(x)] € R™*™
df, 1 v € TuM = Projr [Df (x)v]
[df] € R™"

Intrinsic SCvx: same methodology, but use the differential instead of the
Jacobian for linearizing the dynamics and constraints

Figure: Visualization of the differential

Next steps:
@ implement intrinsic SCvx methodology in Python and CVXPY

@ Compare SCvx and intrinsic SCvx
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Experiments and Results

Boresight trajectory. N=30, tau=0.1, theta_max=20.0

—— keep out zone
< to

SCvx

iSCvx

start

desired

°® 0

Figure: Trajectory of boresight vector, red
circle is keep-out zone

N=30, tau = 1, Ave lteration ratio  Iteration ratio std  Ave Cost ratio
eps_tol = 1e-3

theta_max = 10 0.896 0117 0956
theta_max = 20 0837 0.112 0.92
theta_max = 30 0832 0.122 0.893
N=60,tau=.05,  Ave lteration ratio Iteration ratio std  Ave Costratio
eps _tol = 1e-3

theta_max = 10 0.646 0.121 0955
theta_max = 20 0.742 0.1 1
theta_max = 30 0.732 0.083 0994
N=30,tau=.1,  Ave Mteration ratio Iteration ratiostd  Ave Cost ratio
eps_tol = 1e-5

theta_max = 10 0.646 0.121 0.854
theta_max = 20 0.64 0.128 0.822
theta_max = 30 0851 0.142 0.896
N=60,tau=.05,  Ave lteration ratio Iteration ratiostd  Ave Cost ratio
eps_tol = 1e-5

theta_max = 10 0.428 0.125 0.988
theta_max = 20 0.458 0.144 0.9897
theta_max = 30 0.445 0.124 1.001

Spencer Kraisler (RAIN Lab) NASA JSC




Future Work and Conclusion

@ Obtain similar convergence guarnatees for intrinsic SCvx, as was obtained for
SCvx

@ Test on more complicated problem set-ups, such as powered descent of a
rocket

o Plan: Write library in Python to handle even more general problem-setups,
possibly include a Riemannian auto-differentiator (ManOpt)

@ Submit journal paper

@ Implement some online MPC on quadcopter testbed when finished
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