Optimal Control for Systems with non-Euclidean State Spaces

Presenter: Spencer Kraisler

RAIN Lab William E. Boeing Department of Aeronautics & Astronautics University of Washington

November 2024

Table of Contents

2 Intrinsic Successive Convexification

S DODCOR	K raiclor I	
SUBLICE		

< □ > < □ > < □ > < □ > < □ >

2

Who Am I?

- Seattle
- Hobbies: curling, shotokan karate (2nd degree black belt), reading
- PhD candidate at UW Aerospace
- Passion for executing complex math solutions to practical engineering applications; establishing human presence in space

Figure: My lab

Designing controllers through optimization and (Riemannian geometry)

- Solve the LQG problem through *Riemannian optimization* methods
- Trajectory optimization for systems whose state spaces are smooth manifolds
- Satellite constellations
- Developing quadcopter hardware testbed (Python, ROS)
- Distributed consensus for systems whose state spaces are smooth manifolds

Figure: DROPLET

イロト イ団ト イヨト イヨト

		(DAINI I))	
S DODCOR	K TOUCLOT		
Spencer			

2

5/13

< □ > < □ > < □ > < □ > < □ >

Optimal Control over Smooth Manifolds

$$\min_{\mathbf{x},\mathbf{u}} J(\mathbf{x},\mathbf{u}) = \sum_{k=0}^{T-1} c(x_k, u_k) + h(x_T)$$

s.t. $x_{k+1} = f(x_k, u_k)$
 $s(x_k, u_k) \le 0$

What if the state space is (implicitly) a *smooth manifold*? Is that *important*?

Figure: Powered descent of a rocket $SE(3) \times \mathbb{R}^6$

Figure: Constrained attitude trajectory problem $SO(3) \times \mathbb{R}^3$

Figure: Mobile manipulator (Lie group)

Spencer Kraisler (RAIN Lab)

NASA JSC

Nov. 2024

6/13

Smooth Manifold

Smooth manifold ${\mathcal M}$

- A space which is *locally Euclidean*
 - Unit quaternions ${\cal Q}$
- Compatible with calculus
- Tangent space $T_{\times}\mathcal{M}\cong\mathbb{R}^n$

•
$$T_q \mathcal{Q} = \{ v \in \mathbb{R}^4 : q^T v = 0 \} \cong \mathbb{R}^3$$

Retraction: $R_x : T_x \mathcal{M} \to \mathcal{M}$

Figure: Smooth manifold examples

- 1st-order solver for non-convex trajectory optimization problems
- allows infeasible initial trajectories
- highly scalable
- How SCvx works:
 - Start with infeasible trajectory (x, u)
 - Solves a "zoomed-in" convex sub-problem with linearizing dynamics and constraints, obtaining trajectory perturbations (η, ξ)
 - f 3 adds perturbations to trajectory: ${f x}^+ \leftarrow {f x} + m \eta$, ${f u}^+ \leftarrow {f u} + m \xi$
 - 4 Repeat

< ロ > < 同 > < 回 > < 回 >

From Shortcomings to Goals

Shortcomings:

- Depends on state-space parameterization
- edundant dimensions
- Next trajectory won't be on manifold

Figure: Visualization of perturbing a trajectory along a tangent space.

Goals:

- Perform SCvx in a way that is intrinsic to the manifold, not the parameterization
- Ensure perturbations are tangent to the manifold surface
- Use a retraction to "add" the perturbations to the trajectory in an intrinsic way

< ロ > < 同 > < 回 > < 回 >

- Write Python script for SCvx using only CVXPY and NumPy
- Simple problem: rotate q_k ∈ Q with angular velocity ω_k for (fixed) Δt seconds:

 $q_{k+1} = q_k \otimes \exp(\Delta t \cdot \omega_k)$

- Onstraints: keep-out zone
- Visualization script (plots the boresight vector trajectory and the keepout zone)

Next step: achieve the goals of developing an intrinsic SCvx methodology...

< □ > < □ > < □ > < □ > < □ >

Linearizing Dynamics over a Smooth Manifold

 $f:\mathcal{M}\to\mathcal{M}$

Best linear approximation of f at x: the differential $df_x : T_x \mathcal{M} \to T_{f(x)} \mathcal{M}$

Idea: if $\mathcal{M} \subset \mathbb{R}^m$ and dim $(\mathcal{M}) = n < m$, then

 $[Df(x)] \in \mathbb{R}^{m \times m}$ $df_x : v \in T_x \mathcal{M} \mapsto \operatorname{Proj}_{T_x \mathcal{M}}[Df(x)v]$ $[df_x] \in \mathbb{R}^{n \times n}$

Figure: Visualization of the differential

Intrinsic SCvx: same methodology, but use the differential instead of the Jacobian for linearizing the dynamics and constraints

Next steps:

- implement intrinsic SCvx methodology in Python and CVXPY
- Compare SCvx and intrinsic SCvx

ヘロト ヘロト ヘヨト ヘヨト

1/13

э

Experiments and Results

Boresight trajectory. N=30, tau=0.1, theta max=20.0

Figure:	Trajectory of boresight vector,	red
circle is	keep-out zone	

N=30, tau = .1, eps_tol = 1e-3	Ave Iteration ratio	Iteration ratio std	Ave Cost ratio
theta_max = 10	0.896	0.117	0.956
theta_max = 20	0.937	0.112	0.92
theta_max = 30	0.932	0.122	0.893
N=60, tau = .05, eps_tol = 1e-3	Ave Iteration ratio	Iteration ratio std	Ave Cost ratio
theta_max = 10	0.646	0.121	0.955
theta_max = 20	0.742	0.1	1
theta_max = 30	0.732	0.093	0.994
N=30, tau = .1, eps_tol = 1e-5	Ave Iteration ratio	Iteration ratio std	Ave Cost ratio
N=30, tau = .1, eps_tol = 1e-5 theta_max = 10	Ave Iteration ratio 0.646	Iteration ratio std 0.121	Ave Cost ratio
N=30, tau = .1, eps_tol = 1e-5 theta_max = 10 theta_max = 20	Ave Iteration ratio 0.646 0.64	Iteration ratio std 0.121 0.128	Ave Cost ratio 0.954 0.922
N=30, tau = .1, eps_tol = 1e-5 theta_max = 10 theta_max = 20 theta_max = 30	Ave Iteration ratio 0.646 0.651	1teration ratio std 0.121 0.128 0.142	Ave Cost ratio 0.954 0.922 0.896
N=30, tau = .1, eps_tol = 1e-5 theta_max = 10 theta_max = 20 theta_max = 30 N=60, tau = .05, eps_tol = 1e-5	Ave Iteration ratio 0.646 0.64 0.651 Ave Iteration ratio	Iteration ratio std 0.121 0.128 0.142 Iteration ratio std	Ave Cost ratio 0.954 0.922 0.896 Ave Cost ratio
N=30, tau = .1, eps_tol = 1e-5 theta_max = 10 theta_max = 20 theta_max = 30 N=60, tau = .05, eps_tol = 1e-5 theta_max = 10	Ave Iteration ratio 0.646 0.64 0.651 Ave Iteration ratio 0.428	Iteration ratio std 0.121 0.128 0.142 Iteration ratio std 0.125	Ave Cost ratio 0.954 0.922 0.896 Ave Cost ratio 0.988
N=30, tau = .1, eps_tol = 1e-5 theta_max = 10 theta_max = 20 theta_max = 30 N=60, tau = .05, eps_tol = 1e-5 theta_max = 10 theta_max = 20	Ave Iteration ratio 0.646 0.64 0.651 Ave Iteration ratio 0.428 0.458	Iteration ratio std 0.121 0.128 0.142 Iteration ratio std 0.125 0.144	Ave Cost ratio 0.954 0.922 0.896 Ave Cost ratio 0.988 0.997

イロト イヨト イヨト イヨト

Nov. 2024

2

12/13

- Obtain similar convergence guarnatees for intrinsic SCvx, as was obtained for SCvx
- Test on more complicated problem set-ups, such as powered descent of a rocket
 - Plan: Write library in Python to handle even more general problem-setups, possibly include a Riemannian auto-differentiator (ManOpt)
- Submit journal paper
- Implement some online MPC on quadcopter testbed when finished

(日) (四) (日) (日) (日)