2022 A&A RESEARCH SHOWCASE **STUDENTS: Spencer Kraisler, RAIN Lab**

Distributed Consensus Algorithms on Lie Groups

Background:

- Consensus algorithms are inspired by nature
- Lie Groups capture nature in fundamental ways
 - Ex. Subatomic particles

Fireflies reaching **consensus** in their blinking patterns

Video credit: Fireflies: https://youtu.be/ZGvtnE1Wy6U

Drone: https://www.youtube.com/watc h?v=Ddeht8prpJw&t=21s

> WILLIAM E. BOEING DEPARTMENT OF AERONAUTICS & ASTRONAUTICS

Motivation:

- Linearization has **limits**
- Average human paradox
- Control tools + concepts generalize naturally to Lie
 - groups

The state space of a dome camera on a UAV is the Lie group $S^1 \times S^1$ (Torus)

Very computer-friendly

Applications: Distributed pose estimation of space debris by a network of CubeSats (I'm doing this) Coordinated motion of any

- - arms)

44=E4U

system on a Lie group (ex. robot

Every CubeSat has an attitude estimate of the target with an "error attitude"

Distributed Consensus Algorithms on Lie Groups

STUDENTS: Spencer Kraisler

Consensus algorithms are a ubiquitous tool for multi-agent systems and distributed estimation. However, consensus algorithms are usually applied to vector spaces. For many applications, it is more natural to utilize the Lie group structure of the system than linearizing about a point. Lie groups are closed matrix groups, such as the space of 3D rotations called SO(3). I am researching ways to generalize consensus algorithms to Lie groups and apply the concept to distributed sensor networks, like a CubeSat constellation.

Review of Lie Groups

	Vector Space	Lie Groups (ex. SO(
Distance (squared)	$d^{2}(x_{i}, x_{j}) = x_{j} - x_{i} _{2}^{2}$	$d^{2}(g_{i}, g_{j})$ = $-\frac{1}{2}$ Tr(log($g_{i}^{T}g_{j}$) ²
Relative displacement	$x_{ij} = x_j - x_i$	$g_{ij} = g_i^{-1}g_j$
Average	$\frac{1}{N}\sum_{i=1}^{N}x_{i}$	$\operatorname{argmin}_{g \in G} \sum_{i=1}^{N} d^{2}(g, g_{i})$
Consensus protocol	$\dot{x}_i = \sum_{j \in N_i} x_j - x_i$	$\dot{g}_i = g_i \sum_{j \in N_i} \log(g_i^{-1}g_j)$
Point of convergence	The Euclidean average	Close to Riemannia average

The relative displacement of g_2 relative to g_1 is $g_1^{-1}g_2$

WILLIAM E. BOEING DEPARTMENT OF AERONAUTICS & ASTRONAUTICS

attitude of the target in a distributed fashion

The matrix exp and log operators are a way to transform a Lie group to a vector space for computation

ADVISERS: Dr. Mehran Mesbahi

Euclidean consensus ze each node with $u_i \in \mathbb{R}^n$	
ach node $i = 1,, N$ in parallel:	
itialize the node with local measurement $u_i(0) = u_i$	(a) View from Ego SC 1
or $l \in \mathbb{N}$, compute the update $x_i(l+1) = x_i(l) + \epsilon(l) \sum_{j \in N_j} (x_j(l) - x_i(l))$	
	(c) View from Ego SC 3
	Images from our homemade unrattitude of the target R_{target} to the
es (ego, green) with cameras and	
all-to-all), where each satellite can	 Big result: If the agents are initialized within a
tude	convex ball, consensus is always
ork to compute the "average"	 Consensus point is very close to the Riemannian average!
Pose prediction (with PMor ε_{1}) $u_{1} > \varepsilon_{1} u'$ $u_{2} > \varepsilon_{1} u'$	

- I am working on a general theory for consensus algorithms on Lie groups. This is one of the many possible applications
- I proved nice convergence properties of a consensus Aerospace Conference

Graduate Students: Shahriar Talebi

algorithm for all Lie groups. Writing a paper for 2023 IEEE