Spencer Kraisler

Seattle, WA | spencerkraisler@gmail.com | 360-558-2527 | spencerkraisler.github.io

linkedin.com/in/spencer-kraisler | github.com/spencerkraisler

Education

University of Washington, Ph.D. in Aerospace Engineering

University of Washington, B.S. in Mathematics NASA Recipient Space Grant, 3x Dean's List

Technologies

Python, Matlab, C++, PyTorch, ROS, SQL, CVXPY, Simulink

Experience

Research Assistant, RAIN Lab - Seattle, WA

- Highly experienced with driving and executing research and development, specializing in applying complex math solutions to practical applications
- Collaborated with JPL, developed new 3D camera-based satellite pose estimation algo, published 2 papers
- Leadership: enable undergrads to integrate Kalman filter and test off-board PNT sensors
- Published 7 journal and conference papers, 3 as 1st author on pose estimation, policy optimization, Model Predictive Control (MPC)

Flight Software Intern, SpaceX - Redmond, WA

- Collaborated with senior devs, built pipeline using Python and SQL that pulls recent network topology and failure data for predictor verification
- Used pipeline to design and test several highly accurate network failure predictors
- 4 successful commit reviews for pipeline, failure predictors, and bug fixes

Software Intern, Giving Tech Labs - Seattle, WA

- Built and tested neural network and logistic regression models for emotion recognition from audio data using PyTorch – achieved 20% higher F1 metric score
- Committed emotion prediction models to production code base using Python, C++, and Swift

Projects

RAIN Lab Quadrotor Testbed

- Designed custom quadrotor using open source PX4 autopilot software
- Using ROS, integrated Vicon motion capture system for quadrotor pose estimation
- Built digital twin and off-board motion planning system using Python with CVXPY and C++

Trajectory Optimization: Successive Convexification (SCvx), used for MPC

- Using Python and CVXPY, built an augmentation of SCvx algo using *Riemannian optimization* techniques
- Convergence achieved in 50% less iterations on the constrained satellite pose control problem
- Collaborating with ACL lab at UW, writing paper on MPC and policy optimization

Additional Experience And Awards

RAIN Lab GitHub Organization Maintainer	Nov. 2023 - Present
ManOpt Contributor Contributes code to the ManOpt repo, a Matlab/Python package for Riemannian Optimization numerical computation	Jan. 2023
Third Prize, UW AA Research Showcase Awarded 3rd prize in a UW AA hosted research showcase competition on my satellite pose estimation project	Jan. 2021

Sept. 2021 - Dec. 2025 expected Sept. 2017 – June 2021

June 2022 - Sept. 2022

June 2020 - Sept. 2020

Sept. 2021 – Present

June 2024 - Present

June 2024 - Present

Publications	
Output-Feedback Synthesis Orbit Geometry: Quotient Manifolds and LQG Direct Policy Optimization IEEE Control Systems Letters	2024
Spencer Kraisler, Mehran Mesbahi	
Policy Optimization in Control: Geometry and Algorithmic Implications Springer Encyclopedia of Systems and Control, in review	2024
Shahriar Talebi, Yang Zheng, Spencer Kraisler , et al.	
Centralized and Distributed Strategies for Handover-Aware Task Allocation in Satellite Constellations Journal of Guidance, Control, and Dynamics, in review	2024
Josh Holder, Spencer Kraisler , Mehran Mesbahi	
Consensus on Lie Groups for the Riemannian Center of Mass Conference on Decision and Control	2023
Spencer Kraisler, Mehran Mesbahi	
Distributed Consensus on Manifolds using the Riemannian Center of Mass Conference on Control Technology and Applications	2023
Spencer Kraisler, Shahriar Talebi, Mehran Mesbahi	
Multi-Agent Passivity-based Control for Perception-based Guidance AIAA SCITECH	2023
Aditya Deole, Shahriar Talebi, Spencer Kraisler , et al.	
Vision-based Distributed Pose Estimation using a Spacecraft Constellation AIAA SCITECH	2023
Saptarshi Bandyopadhyay, Vinod P Gehlot, William Seto, Amir Rahmani, Spencer Kraisler , et al.	